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ABSTRACT

A method for recursively computing the coefficient
of the time-dependent f and g series solution to
the two-body problem is derived. To find the coeffi-
cients of the texrms in the f and g series, time

derivatives are taken of the function h = u/rB. In
this formulation another variable ¢ = ht¥ is intro-
duced, and a recursive relation for the derivatives of
h is found in terms of the derivatives of the radial
magnitude and of the preceding derivatives of h. A
recursive relation for the derivatives of r is then
derived. After the time derivatives of h are deter-
mined, the coefficients in the f and g series are
found from well-known formulas. The convergence prop-
erties of the f and g series are studied using up
to 102 terms. The time interval of convergence is com-
pared with the computed time radius of convergence of
the series with excellent agreement.
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RECURSIVE COMPUTATION OF THE COEFFICIENTS OF THE TIME-DEPENDENT
f AND g SERIES SOLUTION OF KEPLERTIAN MOTION AND A
STUDY OF THE CONVERGENCE PROPERTIES OF THE SOLUTION

By Viector R. Bond
Manned Spacecraft Center

SUMMARY

This report formulates a method for recursively computing the coefficients
of the time-dependent f and g series solution to the two-body problem. To
find the coefficients of the terms in the f and g time series, time deriva-

tives are taken of the function, h = u/fB. This ordinarily becomes algebrai-
cally prohibitive after only a few derivatives. In the formulation presented

in this paper another variable, ¢ = hr, is introduced, which gives a recursive
relation for the derivatives of h in terms of the derivatives of the radial
magnitude, r, and of preceding derivatives of h. Recursive relations for the
derivatives of @§ and r are then derived. After the time derivatives of h
are determined, the coefficients in the f and g series are found from stand-
ard formulas,

The datae presented provide a comparison of the non-dimensional angular
momentum fg - gf computed by this recursive method with the theoretical
value of unity for the angular momentum. This comparison indicates the number
of terms which should be used in the f and g series for them to represent
accurately a solution to the two-body problem for a given set of initial con-
ditions.

The results show that there is a point beyond which the use of additional
terms in the series does not extend the time interval over which the series
solution is valid. This time interval may be computed from the formula for the
radius of convergence of the f and g series. The regions of convergence
that are apparent from the results are in excellent agreement with the computed
values of the radius of convergence. It is demonstrated by four examples that
the use of 30 terms in the series maintains a high degree of accuracy for a
time interval of approximately one-half the computed radius of convergence.

INTRODUCTION

The solution to the two-body problem, or Keplerian motion, may be expressed
explicitly as a function of time through the use of the f and g series. As



stated in reference 1, this solution has been known for some time, having first

been used by Lagrange in 1869. The problem encountered in using this solution

is that the coefficients in the series have been very difficult to obtain except

for about the first six terms. In recent literature (refs. 2 and 3) authors
comment that six terms are sufficient for short time intervals and that the
higher terms are tedious or impractical to obtain. Reference 4 indicates that
a general or recursive formulas for generating the coefficients exists but is
obscure; no attempt is made to present the recursive relations.

Reference 1 describes a digital computer program which generates up to
27 coefficients for use in the f and g series. This program uses a re=-
cursive formulation first discovered by Cipolletti in 1872, This formulation
is recursive in only a limited sense because the coefficients of a given order
depend upon the derivatives of the coefficients of the previous order. The
coefficients beyond the sixth or seventh are still impractical to obtain by
hand computation because there is no recursive formulation for the derivatives
of the coefficients in Cipolletti’s method.

This report includes the derivation of a recursive method for generating
the coefficients which does not require derivative operations. It also dis-
cusses some of the convergence properties of the f and g series and pre-
sents several numerical examples.

SYMBOIS
a semimajor axis
ay coefficients in equation for f£(t)
by coefficients in equation for g(t)
C coefficients in equation for h(t)
E eccentric anomaly
e eccentricity

£(t) series defined by equation (2)

g(t) series defined by equation (3)

H the hyperbolic equivalent of E

h(t) series defined by equation (8)

i index inferred from equations (16) and (17); VF:I in appendix A

j index inferred from equations (&) and (5)




Py

¢

angular momentum per unit mass

the non-dimensional angular momentum, £& - gf
natural logarithm

mean anomsaly

the hyperbolic equivalent of M

index inferred from equations (10), (16), and (17)
maximum number of derivatives of h desired

radius of attracting body

position vector

magnitude of r

time of peri-apsis passage

time

velocity vector

parameter defined by equation (AT)

universal gravitational constant times mass of attracting body
radius of convergence

radius of convergence for hyperbolic orbits

variable defined by equation (12)

Other Notations:

( )(n) nth

()
(s

()*

derivative of ( ) with respect to time
derivative of ( ) with respect to time

( ) evaluated at initial time to; or indicates the first coefficient

in the series defined by equations (2), (3), and (8)

N.

(N - 1) the binomial coefficients

value of ( ) at first singular point of the f and g series



DERTIVATION

This formulation of the f and g time series solution to the two-bbdy
problem will follow to a large extent that of Brouwer and Clemence (ref. 5),
evcept that vector notation will be used for convenlence.

Tae solution to the two-body problem may be written
= () 4+ A (i
r(t) = x, £(t) + v &(t) 8

20 and Xo are the initial position and velocity vectors. The functions

f(t) and g(t) are given by

=]

k

£(t) =Z a, (t - to) (2)
k:O
[oe]
g(t) =) b t-t)k (3)
k o)
k:O
The ak and bk are obtained from the relations
J
6, . = -1 ¢ a (%)
j+e (3 +1)(5 + 2) k T3-k

k=0
s TG TG T 2) i e Pk
K

(5)
=0
for j = o. The coefficients ajs 8y, bo’ bl are

a =1 )
o
a. =0 :
1

P (6)
b =0
o
by =1 J

The c, are derivable from the Taylor's expansion for the term p,/r5

which appears in the equations of motion



r3
Define the function
h(t) =l*—3
r
by expanding h(t) about the epoch to
x
n
he) =), e (b - t)
n o)
n=0
where
(n)
h(to)
c =
n n!

(7)

(8)

(9)

(10)

The subscript zero will now be dropped from the notation, since all co-

efficients and derivatives will be assumed to be evaluated at to.

Recursive Formula for Time Derivatives of h

The time derivatives of h must now be obtained in order to develop the

solution.

The first derivative of h is
n(1) | = 2 1) o _ 58 ,(2)
r
r
At this point introduce the variable

Equation (11) becomes
L) _ 3¢
T

Take the second derivative of h from (13) to obtain

h(g) . r¢<l) 5 ¢r(l)

r

(11)

(12)

(13)

(1)



Now use (13) to eliminate ¢ in (1k%)

RO <3¢<1> e hm) (15)

In successive derivatives a similar elimination process is followed to obtain

OB (3¢<e) L (1) 1(2) (@) h<1>)

The numerical coefficients of the terms in these expressions may be found from
the binomial coefficient relation. For the nth derivative

ne-l
h(n) _ il 3¢(n-l) +;E: <n;l> r(i) h(n-i) . (16)
i=1

Recursive Formula for Time Derivatives of ¢

The derivative ¢(n-l) must now be found in order to evaluate properly
(16). Applying Ieibnitz's rule for the differentiation of a product to equa-
tion (12), the nth derivative of ¢ becomes

gn) - () i (2) @) yln-te) (an)

1
i=1

Equation (17) may now be used to eliminate ¢(n-l) in equation (16). Sub-
stitute n-1 for n in (17) and obtain
n-1
g(-1) | () +Z (n;1> n(1) (n-1) (18)
i=1
Now substitute (18) into (16) and obtain

n-l

() o oL 5 (m) +Z (%31) () £(-2) 4 () (me2)) (19)
=1

R~




Recursive Formula for Time Derivatives of r

The derivatives of the radial magnitude are now needed to complete the
formulation. The first derivative of r is found from the initial conditions

r(l) = 3_9.__35_0 (20)

2
() _ L0 _ B
r == -3 (21)
r r
where
L =| r XV
-0 7 —o
Equation (21) may be written by using (8)
2
(2) _ L
r® = h - 45 (22)
r
The third derivative of r is
2 (1)
L3) 10, Q) aur T’
i 0
or by using (8) and (12)
2
L 1
() =;—h( )+2¢ (23)
The higher derivatives of r follow directly
) 18 (@), 40
r =—h + 2@
1
+
The r(n 2) derivative of r may now be written
2
n+2 L -
r( ) - I:_ h(n) + 2¢(n 1) (2k)



or by using equation (18)
n=-1

2 . .
L(m2) 5—- n(m) 4o Z <n;1> (1) (n-1) oy (0) (25)
i=1
for n = 1.
Method of Computation
Given: Tor Yoo W to’ t, 0 oox

(#) Compute h, r%), and r(®) from equations (8), (20), ana (21).
(p) Set n=1

Compute h(l) from (19)

Compute r(5) from (25).
(¢) Set n =2

h(g) from (19)
(%)

Compute
Compute r from (25)

(d) Continue this scheme until the desired number, LN of the deriva-

tives of h are found.
(e) Compute the c,, n=0,%t n _ from equation (10).

(f) Compute the coefficients a,_  and D

Kk 1 k=0 to n.
equations (4) and (5).

+ iy
ax 2 . rom

(g) Compute f(t) and g(t) from equations (2) and (3).

(n) Compute the position vector r(t) from (1) and also the velocity
vector from the time derivative of (1).

This completes the solution.
CONVERGENCE OF THE SERTES

In reference 6 Sconzo and Hale showed that the radius of convergence, that
is, the time between epoch time to and the time of the nearest singular point

of f and g, could be found from the expression

8




1
p=/é—5-{Mo2+[1n<l+P>-\/1_-_e§]2}2 (26)

0O€£e <1, -nt = MO <xw, and a >0

where

This relation is obviously limited to elliptical orbits, since for hyperbolie
orbits, a < O.

The semimajor axis a, eccentricity e, and the mean anomaly Mo may

be computed from the formulas

.V
1 2 -0 -~ —0 :
e -0 (27)
a I‘O K
Yo
ecos E =1 -« — (28)
o) a
E A
e sin B, = ——— (29)
pa

= s = B -
M = EO - e sin Eo = /35 <to T> (30)

The implication of equation (26) is that the convergence of the series de~
pends not only upon the shape of the orbit as defined by e and a, but also
upon the initial time as measured from the time of periapsis passage T.

The radius of convergence for hyperbolic orbits is given in appendix A.
NUMERICAT, EXAMPTES

Four examples are presented to illustrate some of the results og the re-
cursive formulation. In each example, the values of the quantity L = fz - gf
are computed several times, each time with a different number of terms ranging
from 6 terms to 102 terms. The quantity L’ 1is a constant of the motion as
shownlin appendix B and should have a constant value of unity. Any deviation
of L from unity must result from either truncating the series before a suf-
ficient number of terms have been taken, or from extending the time interval
beyond the radius of convergence of the series.



Example 1, low altitude nearly circular orbit about the moon:
= (-1012. 4370, -51.263872, =-20.120039) n. mi.

= (~287.96060, 491k, 2673, 1967.3377) ft/sec.

d< 43

Example 2, at insertion into translunar orbit from earth parking orbit:
= (3091.8028, 1633.2175, 883.5347) n. mi.
= (-14646.307, 27051.882, 17921.139) ft/sec.

< &

Example 3, approximately 46 hours from insertion into a translunar trajectory:

= (-161265.14, -20351,149, -5044,6929) n. mi.

(g*i

= (~3132.8173, -1023.4259, -501,70741) ft/sec.

$<

Example 4, at lunar sphere of influence on a translunar trajectory, going
toward the moon:

n

(25135.706, -20187.383, -11280.829) n. mi.

(~3090.2697, 2125.8987, 1198.1489) ft/sec

4= 3

In examples 2 and 3, z, and Xo are referenced to the geocentric system;
and in examples 1 and 4, r, and v, are referenced to the selenocentric
system.

All four examples, seen in tables I to IV, show that the accuracy of the
series solution improves as the number of terms in the f and g series in-
creases for a given time from epoch, as would be expected. It is also seen
from tables T to IV that the series solution diverges rather sharply near the
computed values of the radius of convergence. The addition of more terms to
the series will not increase the validity range of the solution near the com-
puted value of the radius of convergence.

, An interesting point that can be gseen from tables IT to IV is that
L' may actually be closer to unity with only a few terms than it is with a
larger number of terms; but this occurs only at values of time greater than the
computed radius of convergence. The numbers for L’ beyond the radius of con-
vergence have 1ittle if any meaning.

The radius of convergence for example 1 was found from equation (26) to be
P = 3.69 hours. The eccentricity of this orbit is 0.000010%32, so that it is
very nearly circular. For & purely circular orbit where the eccentricity is
exactly zero, the radius of convergence would approach infinite time.

10



The radii of convergence p, for examples 2 and 3 (poth are examples of
nearly parabolic trajectories), were computed from equation (26). For example 2
it was found that p = 0.2280 hour, and for example 3 it was found that
p = 45.71 hours. These times are consistent with the results shown in tables IT
and III. For example 2 the epoch chosen was 0,03941 hour after perigee, and,
for example 3 the epoch chosen was 45.71 hours after perigee. The contrast of
these two examples points out the implication of eguation (26), that is, that
the radius of convergence depends upon the relation of epoch to the time of
periapsis passage. The radius of convergence increases as to - T, or MO
increases.

Example 4 is a case representing a hyperbolic orbit. The epoch chosen was
1%.51 hours before pericynthion passage, and the radius of convergence was
1%.51 hours.

The numbexr of terms required for the solution is of course dictated by the
accuracy requirements of the problem to be solved. It should be noted from
tables T to IV that for 30 terms, eight-digit accuracy is maintained for a time
equal to about one-half of the computed radius of convergence. The time inter-
val over which the series converges increases with the addition of more terms,
but the change in the time interval decreases. This means, of course, that the
addition of more terms will increase accuracy, but not always by a significant
amount. For example, table I shows that eight-digit accuracy is maintained to
a maximum of 2.20 hours by using 54 terms or by using up to 102 terms. The
accuracy that is obtained, of course, depends to a great extent on the accuracy
of the computer that is used in the computation. The numerical results pre-
sented here were obtained on a 10-digit electronic computer.

All four examples were computed by using the non-dimensionalized method

such that the initial position was in urits of the radius RB of the attract-

ing body; the initlial velocity in units of the circular satellite velocity

1/2 R 3

(%) B

1/2
; and time in units of (_H_> . This allows the gravitational pa-
rameter y To be set equal to unity in the equations.

CONCLUDING REMARKS

A recursive scheme for computing the coefficients in the f and g series
solution to the two-body problem has been presented. Four examples demonstrate
the time interval over which the series solution is valid from 6 terms up to
102 terms. This time interval is compared with the radius of convergence of
the f and g series, and excellent agreement is obtained. Tt is demonstrated
by four examples that a high degree of accuracy is maintained for a time inter-
val of approximately one-half the computed radius of convergence by using
30 terms in the series.

11



APPENDIX A

RADTUS OF CONVERGENCE FOR HYPERBOLIC CASES

In reference £, 1t was shown that the radius of convergence of the
series for the elliptical case could be expressed by

g

p =

where M?*

f and g series.

f and

M¥ - M (A1)

/&
"

O‘

is the value of the mean anomaly at the first singular point of the
By analogy, the radius of convergence for the hyperbolic

case may be derived by expressing equation (Al) as

3
g = V/;é:_’N* - No,

is the hyperbolic equivalent of the elliptical mean anomaly M, and

where N
is given by

N =

The value of N at the first singular point of the

and the value of N at epoch time

elliptical eccentric anomaly E

The singularities of equation

is

(A2)

e sinh H - H (A3)
f and g series is ¥,
is The hyperbolic equivalent of the
H.

N.
o

(A3) are given by

d
Fg —ecoshH-1=0 (AL)
This follows since the singularities of the function H(N) are glven by
aH _,
o (A5)

Since for the hyperbolic case
solutions of equation (Ak) for H¥

where 1

Y=y

i2

cosh H =2 1, the
Setting

e > 1, and also since
can only be in imaginary.

H* = ia (A6)



and substituting this expression into (AL),

e cosh (ia) -1=0

or, since cosh (ia) = cos a

(A7)

Ccos o =

(ONTE

Substituting equation (A6) and equation (A7) into equation (A3), the value
of N* at the first singularity is

Y
E -

sinh (ia) - io

cos o
But since sinh (ia) =i sin «
N* = i(tan @ - a) (a8)

Substituting equation (A8) into equation (A2) yields

3
~a
Py = o

The absolute value of the complex variable

i(tan o - a) - No’

pH is given by

1
[ 3 2
Py = —_aLL— E\To2 + (tan a - a)ﬂ (49)

The semimajor axlis a may be computed as in the elliptical case from
equation (27). The eccentricity and NO are computed from

T

ecoshH =1 — (A10)
o] 8
Io - Yo
e sinh H = ———— (A11)
(o] ‘,_pa
= 1 - = /=B -
N, =e sinh H - H_ K (to T) (A12)

The parameter o is computed from equation (A?).

13



APPENDIX B
THE NON-DIMENSIONAT, ANGULAR MOMENTUM, f% - gf

The quantity f& - gf may be shown to be a constant of the motion by
taking the cross product of equation (1) with its time derivative

v(t) = r B(t) + v &(t) (81)

Taking the cross product,

XY = (8 vg) X (zF + v 2)

(zo x v ) (& - ef)
Since the angular momentum r, XY, must remain constent,

rXy=r Xy

=0 o)
Therefore,
fg - gf =1 (B2)
Tt is seen also that the ratio
lr X v| .
v ] - 8- 8f (B3)
=0 -0

This quantity is defined by L' and is called the non-dimensional angular
momentum.

Manned Spacecraft Center
National Aeronautics and Space Administration

Houston, Texas, September 9, 1965

1h



REFFRENCES

Sconzo, P.; IeShack, A. R.; and Tobey, R.: Symbolic Computation of f and
g Series by Computer. Astronomical J., vol. 70, no. 4, May 1965,
pp. 269-271.

Danby, J. M. A.: Fundamentals of Celestial Mechanics. The MacMillian
Company, 1962.

Herget, P.: The Computation of Orbits. (Privately published by P. Herget,
University of Cincinnati, Cincinnati, Ohio), 1948,

Meacham, R. C.: Power Series Solution of Rocket Eguations of Motion. Air
Force Missle Test Center (TR-59-18), September 18, 1959.

Brouwer, D.; and Clemence, G. M.: Methods of Celestial Mechanics. Academic
Press, 1961.

Sconzo, P.; and Hale, M.: Convergence and Truncation Error Study in Time
Series Expansions. Mission and Mathematical Analysis Rept. 12-010,
(NASA Manned Spacecraft Center, Contract No. NAS 9-995), IBM Federal
Systems Div., 196k.

15



vy

9T

TABLE I.- NON-DIMENSIONAL ANGULAR MOMENTUM AS A FUNCTION OF TIME (EXAMPLE 1) FOR A LOW ALTITUDE NEARLY CIRCULAR ORBIT ABOUT THE MOON

5L’ (6 terms)
140003000
0,999H9393
Na9R1R2THY
NeR?N49322
0.,207203927
aNg9h454HIR
N ,99K97217
T4P513006
45,0H339 /YR
thH 495495713
G440 4,4T152398
109979255 76h9
23n3,414H3029
4A32 ,755949nn])
8157« 3IRIHI IS

16737.508kH04846

L’ (18 terms)
l,00100000
1,u0000000
sutto0nong
1.v0000000
leuQuanono
1,99999947
1499999165
U,9923910%44
Ua99951540
1020474
1,u2147412
1.16184599
1.70%190%4
¢ I Tn97663
14694990198

“19.16149293

2709R,965409 30 «149,92193010

449904327841 1110 =921,h0417027

7236718374111 =0T1/7,42993164

Diverged

&Theoretical value of L’ is onme.

[a =1013.93 n. mi.; e = 0.00001032; t_ - T = 0.8017 hr; p = 3.69h hiz

L’ (30 terms)
100000000
1.00000000
110000000
1.00000000
lenn000000
te00000000
100000000
100000000
01,99994999
0,99399RKS
0e99996624
1e99944N4])
N.99%9n1675
1.99267234
123112709
4,2n531117
244RBTRINZN
129.45372920

M21495R2%9434

.’ (42 terms)
1.00000000
1.,00000000
1,00000000
1,00000000
l.n0000000
T.00000000
1.,00000000
1L.000c000n00
t.v0000000
L.0n0n00000
1.0n000003
1.00000072
1.00000249
1.99947H66
1,98096207
n,6811°2437
2. 687187917
=3, T72831443

732.,9242177h0

L' (5% terms)
100000000
100000000
100000000
1400009000
1000000600
100000000
100000000
1.00000000
1.00000600
1.00000000
100000000
100000000
1.00000013
1.,000014A80
1000796604
1.02744277
1.2261AR60
=5.4336R079

«92,84171057

L' (66 terms)
1.n0000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.,n0000000
1,00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.n0000001
1.99999974
0.99997976
0,99945287
1.05622703

7.51120066

L' (78 terms)
1.00000000
1.00000000
1.00000000
100000000
1.00000000
1.00000000
1,00000000
1,00000000
1.00000000
1.00000000
1.00000000
1.00000000
100000001
1499999997
1.00000018
0499992753
097741093

=1.84211140

419,70947206 =152.,31261474

L’ (90 terms)
1.,00000000
1.00000000
100000000
100000000
1.00000000
1.00000000
1.00000000
100000000
100000000
1.00000000
1.00000000
100000000
100000001
0499999997
0499999999
1.00001273
1400669948
1.A4966TT6

7R.66362500

L' (102 terms)
100000000
1,00000000
1400000000
1,00000000
1400000000
1400000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1+00000000
1.00000001
099999997
0.99999997
0.99999881
0.99932236
0.85383668

24.51076870



LT

TABLE II.- NON-DIMENSIONAL ANGULAR MOMENTUM AS A FUNCTION OF TIME (EXAMPIE 2) FROM INSERTION INTO TRANSIUNAR ORBIT FROM AN EARTH PARKING ORBIT
E. =134 467 n. mi.; e = 0.9575; t, - T = 0.03941 hr; p = 0.2280 hr]

Time, hr 8L’ (6 terms) L’ (18 terms) T (30 terms) L' (42 terms) L' (5% terms) L' (66 terms) L’ (78 terms) L' (90 terms) L' (102 terms)

0.00 1.00000000 1.,00000000 100000000 1.00600000 1400000000 1.00000000 1400000000 1400000000 1.00000000
0.01 1.00000003 1,u0000000 1400000000 1.00000000 1.00000000 1,00000000 1.00000000 1400000000 1.00000000
0,02 1.00000102 1,u0000000 1.10000000 L.00600000 1400900000 1,00000000 1400000000 1400000000 1.00000000
0,03 100000743 L,u0a0nono 14000000600 1.00000000 1.00000000 1.00000000 1400000000 1.00000000 1,00000000
0,04 1.00003169 1,00500000 1.10000000 1.00000000 1400000000 1.00000000 1.00000000 1.00000000 1400000000
0.05 1.00009536 1,20500000 1.00000000 1.00000000 1.00000000 1.00000000 1,00000000 1400000000 100000000
0406 1.00023390 1.10000000 1.00000000 1.00900000 1400000000 1,00000000 1.00000000 1.00000000 1.00000000
0.07 1.00049819 1.00000000 1400000000 1.00000000 1.00000000 1.,08000000 1.00000000 1400000000 1.00000000
0,08 1.00095694 1,u0200000 1.00000000 1,00000000 1400000000 1,00000000 1400000000 1400000000 1400000000
0409 1,010169047 L.00400001 1.00000000 1,00000090 1400000000 1.00000000 1.00000000 100000000 1400000000
0,10 1.0n283279 L.u0u00006 1.00000000 1.00000000 1400000000 1.00000000 1,00000000 1,00000000 1.00000000
0.11 1400449207 1,u0000032 100000000 1,00000000 1400000000 1.n0000000 1.,00000000 1400000000 1400000000
f.12 1.00683246 1,0070014] 1.70000000 1,00000000 1400000100 1.00000000 1.00000000 1.00000000 1400000000
0.13 1401003907 100000582 1499999999 1,00600000 1.00000000 1.00000000 1400000000 1.00000000 1400000000
0.14 1e01430614 1,00102013 0499999991 1.00000000 1400000000 1,00000000 1.00000000 1.00000000 1.00000000
0.15 111987134 1.10906609 1499999933 1,00000000 1400000000 1,00000000 1.,00000000 1.00000000 1.00000000
0,16 1.027010u8 l1.u0r20087 0499999563 1,00000002 1400000000 1.00000000 1.00000000 1400000000 1400000000
0417 103599024 1,u005712% 0,99997476 1,00000029 1400000001 1,00000000 1.00000000 1400000000 1.00000000
0,18 1.04713077 1.10152979 0.99966804 1.00000294 1400000019 1,99999998 1.10000000 1.00000000 100000000
0,19 1.06077532 1.103883R2 0.99936927 1,00002636 1400000332 0.99999941 1.00000003 1400000000 1.00000000
0,20 1407729611 1,00+39948 0,99721876 1.00021091 1.00005083 1,99998349 1,00000127 1.00000036 0499999988
0.21 1.0970958) 1.u2178656 N.9RAEYSHE 1.00152308 1.00068187 0.99960797 1.00005312 100002833 0099998387
0,22 1417060894 L,u6~55794 0.95622234 1.01002099 1400910513 0.99197037 1.00186145 1.00179572 0499823757
0.23 1o14H30307 1.10463420 0.84174949 1.06057271 1.08629704 0485623690 1405562255 1409464784 0.84371270
0,24 1.180646403 1.21741223 04645857647 1.33887684 1.83074816  =1.27562261 2.43728604 5621477953 «10,444097%6
0,25 1.,2182921% 1.43933618 =N, 76075607 2,16759534 A.30096441 =31.11421387  33.82119273 163.75213523 «689,15565288

8Theoretical value of L' 1s one.
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TABLE IIT.- NON~-DIMENSIONAL ANGULAR MOMENTUM AS A FUNCTION OF TIME (EXAMPLE 3) FOR INITIAL CONDITIONS
TAKEN APPROXIMATELY 46 HOURS FROM INSERTION INTO TRANSLUNAR ORBIT

[a =133 511 n. mi.; e = 0.9762; t - T = 45.7L hry o = 45.70 hr]

Time, hr 81! (6 terms) L' (18 terms) L' (30 terms) L' (k2 temms) L’ (54 terms) L' (66 terms) L' (78 terms) L’ (90 terms) L' (102 terms)
0,00 1,00000000 L.u0pn0no 100000000 1.00000000 100000000 1.00000000 1,00000000 1.00000000 1.00000000
2,00 1499999946 1000000 100000000 1.00000000 1.00000000 1.00000000 1.10000000 100000000 100000000
4,00 n,99999855 1,004500000 1.00000000 1.00000000 1400000000 1.00000000 1.00000000 1400000000 1400000000
6.00 0299999137 1.00100000 1e00000000 100000000 1.00000000 1.00000000 1.00000000 1.00000000 1400000000
8,00 099994366 l,u00000000 100000000 1.00000000 100000000 1.,00000000 1.00000000 100000000 100000000

10.00 N.9998R968 Le00100000 1400000000 1.00n00000 100000000 L.n00o00000 1,00000000 1400000000 1.00000000

12,00 0.99972691 1,00900000 1.00000000 1,00000000 1.00000000 1,00000000 1.00000000 100000000 100000000

14,00 0.99941213 1,00900000 1.00000000 1.00000000 100000000 1.00000000 100000000 1,00000000 140000000

16,00 N,99R8A116 len0npoong 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 100000000

18,00 0499795840 1,999999G7 100000000 l.00000000 100000000 1.00000000 1.,00000000 100000000 100000000

20,00 0,9965603R 114 999999K5 100000000 1.00000000 1400000000 1.00000000 100000000 1400000000 1.00000000

22,00 N,9944R90G0 1499999924 1.00000000 1.00000000 100000000 1.00000000 100000000 1.00000000 1400000000

24,00 N,99152896 1,99499670 1400000000 1.,00600000 1.00000000 1.00000000 1400000000 1.00000000 1400000000

26.00 0,98742417 1,99998724 0299999999 1.00000000 100000000 1.00000000 100000000 1.00000000 1.00000000

28,00 1,9RIATTIrRA 0,99995545 0.99999984 1.00000000 1400000000 1.,00000000 100000000 100000000 1.00000000

30.00 0,9745421R 1,99985738 1499999915 0499999999 1.00000000 1.00000000 1.00000000 1.00000000 1400000000

32.00 0,96502647 1,99957668 0.999994K5 1,994999993 1.00000000 1.00000000 1.00000000 100000000 1.00000000

34,00 0 eY5PHYR3TR 4a99=824372 0.99996873 1,99999914 0499999938 1.00000000 1.00000000 1400000000 1,00000000

36,00 0,93761444 1,99092164 N,999R37AN 1,9999911R 0499999951 1,99999997 1.00000000 1.00000000 1400000000

38,00 0.9186A3n3 (,99/35083 0.,99922897 n,9999199n N.99999156 1,99999910 0499999990 199999999 1.00000000

40,00 0418541575 U.vB 1B6BAT Ne99662169 n,99935094 1499987349 1499997515 0.99999510 1499999903 0.99999981

42.00 086719430 te95HR10NT 0e986233A5 14995253138 0499433935 0499941445 0.99979260 0499992635 0499997381

44,00 0.%433259170 V,909963R6 0.94747330 1,96836997 0,9A06A990 0,98809280 0499263181 0,9954284] 0.99715928

46,00 0,79281AN6& aHNIIRY29 NeH112335H n,80h34705 0798337417 0,78830374 0.77674350 Ne76391472 0.74996452

48,00 N, 74496192 He0l 164566 0435780251 =0,09721476 =0490327617 ~2.32846288 «4.84811209 -9,30337182 «17,18123839

50,00 NahARTAITL 1422 135975 =1.07757166 =4,TR963B40  =15.38392T73  «49,74771256 =133,N16776R6 ~3R4,27132685«1108.34246802

®Theoretical value of L' is one.
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TABLE IV.- NON-DIMENSIONAL, ANGULAR MOMENTUM AS A FUNCTION OF TIME (EXAMPIE 4) FCR INITIAL CONDITIONS TAKEN AT LUNAR SPHERE OF INFLUENCE (GOING TOWARDS MOON)

Time, hr #L’ (6 terms)
0.00 1400000000
1,00 1400000016
2,00 1400000524
3.00 1.00003980
4,00 100010759
S.00 1.000912189
6,00 1,00127761
T7.00 14NN2TH449
8,00 1.0n539647
9.00 1400973554

10.00 1.01650765

11.00 1.02661942

12.00 1404118351

13,00 1.,06153592

14,00 1.08926206

15,00 1.,12621709

16.00 1417454914

L’ (18 terms)
Le0000000
1,00100000
1400200000
1.00200000
l.00000000
l.00100001
1400000019
1,00700260
1,00102533
1,60718894
1400114254
l,unnR3227
1,u2-80279
1,10244032
1,36744593
2,2135336¢

4,737643R]

STheoretical value of L' 1g one.

[§ = -2059.46 n. mi.; e = 1.658; t, - T = -13.51 hry py = 13.51 h;]

L' {30 terms)
1.060000000
1.00000000
100000000
1.00000000
1400000000
1,00000000
1.00000000
1.00600000
1.,00000006
1.00000191
100004114
1.00N66456
1.,10R468225
1.0R918116
1.80011782
7.33652369

47,01826665

L’ (k2 terms)
1.00000000
1.00000000
1,00000000
l.00000000
1.00000000
1.00000000
1,00000000
1.00000000
1.0000n0000
1,00000002
1.,00000125
l.00006402
1,00234740
1,06574330
?2.49128756

30,51489329

L’ (54 terms)
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.,00000000
100000000
1.00000000
1.00000000
1,00000000
1.00000003
1.0000055R
1.00058814
1.04394422
3.,55409557

136.40132928

S78,36602402 9174.,3942R711]

L' (66 terms) L' (78 terms)

1.00000000
1.00000000
1,00000000
1.00000000
1,00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000045
1.00013588
1.02719069

5,11645155

1,00000000
1.,00000000
1.00000000
1.00000000
1.,00000000
100000000
1,00000000
1,00000000
1.,00000000
1.00000000
1.00000000
1.00000003
1.00002894
1.01558661
7430789565

L’ (90 terms)
1.00000000
1.00000000
1.00000000
1+00000000
1.00000000
1400000000
1400000000
1400000000
1.00000000
1,00000000
1.00000000
l.oooooboo
1400000560
1.00819230
1n,23325536

653,94844055 3496,4009399421382,31518555

Diverged

L' (102 terms)
1400000000
1400000000
1400000000
1400000000
1460000000
1400000000
1.00000000
1400000000
1400000000
1+00000000
1400000000
100000000
1400000094
1.00382623

13,93487235
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